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A B S T R A C T   

Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. 
Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and 
their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy 
and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was imple
mented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. 
Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth 
algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we 
applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated 
volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test 
versus retest. Median volume difference between automated WMH and manual segmentations (mL) was − 0.22 
[IQR = 0.50] for LGA-SPM8, − 0.12[0.57] for LGA-SPM12, − 0.09[0.53] for LPA, while the spatial accuracy (Dice 
Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a 
median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the 
LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably 
reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross- 
sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] 
and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as 
a reliable cross-sectional and longitudinal tool in multi-site studies.   

1. Introduction 

White matter hyperintensities (WMHs) are a marker of white matter 
tissue damage seen as hyperintense signals on T2 and Fluid Attenuated 
Inversion Recovery (FLAIR) images. They are a potential hallmark of 
various disorders such as cerebrovascular disease [1], other neurological 
[2] (e.g. multiple sclerosis, MS, and dementia) [3,4], psychiatric [5] or 
inflammatory disorders [1,6]. Moreover, WMHs are commonly seen also 
in cognitively unimpaired people [7], and their prevalence increases 
with aging [8]. The prevalence of WMHs in community-dwelling elderly 
is highly variable, ranging from 5.3% to 100% depending on study 
design, study population, and WMH assessment methods [9–14]. 
Consistent evidence indicates that the volume of WMHs is positively 
associated with cognitive decline both in cognitively unimpaired people 
[15–17] and in patients with cognitive impairment [18,19]. This sug
gests that WMHs volume is a relevant biomarker and should be taken 
into account not only for the clinical evaluation of elderly people, but 
also in research studies [20,21]. Currently, WMHs are often quantified 
through visual semi-quantitative scales both in clinical and research 
settings (e.g. the Age-Related White Matter Changes, and Fazekas scales) 
[22,23]. These scales are relatively quick, but require proper training 
and show significant inter-rater and intra-rater variability [24]. Similar 
limitations apply to manual segmentation [25], which are in addition 
very time-consuming. To overcome these limitations, there is an 
increasing interest in automated and semi-automated methods allowing 
reliable and effective WMHs segmentation and quantification (for a re
view see [26]). We selected an open-source tool, Lesion Segmentation 
Toolbox (LST) from the Statistical Parametric Mapping (SPM) software 
package, that segments WMHs using FLAIR and T1 images (http://www. 
applied-statistics.de/lst.html). We choose LST because: (i) it does not 
require training; (ii) is freely available; (iii) is fully automated; (iv) in
cludes also a longitudinal pipeline, in addition to cross-sectional algo
rithms, that could be useful for monitoring the WMHs evolution over 
time [27]. LST was originally developed for MS lesion segmentation 
[28], but it was used to segment WMHs also in other diseases such as 
diabetes mellitus [29]. To the best of our knowledge, accuracy and 

test–retest reproducibility of WMH measurements in multi-site studies of 
elderly subjects have been poorly investigated. The aim of this study was 
to assess i) the accuracy of the two LST cross-sectional algorithms versus 
manual segmentation performed by an expert rater (as a standard of 
truth), and ii) the test-retest reproducibility of the two cross-sectional 
algorithms and the longitudinal pipeline of LST. We also tested 
whether accuracy and reproducibility were affected by MRI scanner or 
site effects. 

2. Materials and methods 

For the present study, we analyzed data from the PharmaCog project 
[30]. Participants, study design and further details have been exhaus
tively described in previous studies [31–35], but are briefly summarized 
below. 

2.1. Participants 

Thirteen 3T MRI sites across Italy (Verona, Genoa, Rome, Perugia 
and Naples), Spain (Barcelona), France (Marseille, Lille, and Toulouse), 
Germany (Essen, Leipzig), Greece (Thessaloniki) and the Netherlands 
(Amsterdam) provided imaging data. Each site enrolled four-to-five 
cognitively unimpaired elderly (age range: 50–78 years, 60% of fe
males) scanned twice as follow: (i) baseline (test); (ii) after 7–32 days 
(retest) (median interval: 13.5 days, IQR = 15). This short test–retest 
interval minimizes potential biological changes, allowing to address the 
reproducibility of MRI assessment tools. All participants had no history 
of psychiatric, neurological or systemic disease, were Caucasian and 
provided written informed consent following procedures approved by 
the local institutional review board of the institution where scanning 
was performed. Detailed inclusion and exclusion criteria were described 
elsewhere [33]. 

2.2. MRI acquisition 

The 13 MRI sites used different MRI scanners (Siemens, GE, Philips) and 
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only vendor-provided sequences. For each participant, axial 2D structural 
FLAIR images were obtained in different sessions two weeks apart for the 
test-retest evaluations. The acquisition parameters in each session followed 
mostly the harmonization suggestions from the ADNI-2 protocol (http:// 
adni.loni.usc.edu/methods/documents/mri-protocols). For all sites the 
following basic FLAIR parameters were maintained: voxel 0.9 × 0.9 × 4 
mm3; inversion flip angle 1500, no fat suppression, full k space, accelera
tion factor in the range of 1.5–2 was used where possible. Parameters that 
change across sites are reported in Table 1. Note that some parameters vary 
considerably across vendors due to differences in sequence implementa
tions and definitions. The test–retest raw data from this study will be made 
available on request. 

2.3. MRI manual segmentation 

A rater with expertise in lesion segmentation performed the 2D 
manual segmentation of WMH only on the test FLAIR images using 
FSLview version 5.0.3 blinded to the results of the automated segmen
tation. The process of manual tracing resulted in the definition of binary 
masks, considered as a standard of truth. For each subject, WMHs vol
umes (expressed in mL) were calculated automatically using FSL (fslstats 
of FSLUTILS). 

2.4. MRI automated segmentation: LST 

We have processed the test and retest images using the two LST al
gorithms, and their outputs were further processed using the LST lon
gitudinal pipeline for the reproducibility assessment. These tools are 
described below.  

1. Lesion Growth Algorithm (LGA): LGA is implemented both in SPM8 
and SPM12. The algorithm first segments the T1 images into the 
three main tissue classes (CSF, GM and WM). This information is then 
combined with the coregistered FLAIR intensities in order to calcu
late lesion belief maps. By thresholding these maps with a pre-chosen 

initial threshold (κ) an initial binary lesion map is obtained which is 
subsequently grown along voxels that appear hyperintense in the 
FLAIR image. The result is a lesion probability map. We used LGA 
with an optimized parameter (Kappa = 0.25) set by visual inspection 
of the segmentations resulting from different test parameters [36].  

2. Lesion Prediction Algorithm (LPA): LPA is implemented only in 
SPM12. This algorithm consists of a binary classifier in the form of a 
logistic regression model trained on the data of 53 MS patients with 
severe lesion patterns. Data were obtained at the Department of 
Neurology, Technische Universität München, Munich, Germany. As 
covariates for this model a similar lesion belief map as for the lesion 
growth algorithm [28] was used as well as a spatial covariate that 
takes into account voxel specific changes in lesion probability. Pa
rameters of this model fit are used to segment lesions in new images 
by providing an estimate for the lesion probability for each voxel. 
The algorithm requires only a FLAIR image, however T1 might 
improve WMH segmentation. We used LPA using both T1 and FLAIR. 
No parameters needed to be set [37].  

1) Longitudinal Pipeline: A longitudinal LST pipeline is implemented 
only for SPM12. Segmented lesion maps of test and retests were 
compared using the longitudinal pipeline implemented in the LST 
toolbox. This pipeline consists of the following steps: first, lesion 
maps and FLAIR images are coregistered to the images of the first 
time point; then, relative differences of FLAIR intensities are calcu
lated along all voxels that were segmented as lesions in at least one 
time point; finally, significant increase and decrease of lesion voxels 
are identified if their differences exceed or fall below a certain 
threshold that is obtained by analyzing healthy white matter. As a 
final result, lesion change labels are produced for all consecutive 
time points. In these images the three possible cases decrease, no 
change and increase are labeled by the numbers 1, 2, and 3, 
respectively. Both the LGA and LPA cross-sectional outputs from 
SPM12 were further processed using this pipeline [27]. 

Since LGA and LPA output are on T1-space, we linearly registered 

Table 1 
Summary of demographic, MRI system and 2D FLAIR acquisition differences across MRI sites (largely based on ADNI-2).  

Site (location) 3T MRI Scanner Sequence parameters 2D FLAIR Acquisition 
matrix 

Voxel (read x phase x slice 
mm3) 

Subjects’ 
age, 
median 
(IQR) 

Test-Retest 
Days 
interval, 
median 
(IQR) 

Gender, 
(female 
/N) TR (ms) TE 

(ms) 
TI 
(ms) 

FA 
(◦) 

1 
(Verona) 

Siemens Allegra 9760 86 2500 150 256 × 256  68 (7) 7 (14) 2/5 

2 
(Barcelona) 

Siemens TrioTim 9000 73 (1) 12 (2) 4/4 

3 
(Leipzig) 

Siemens TrioTim 90 62 (4) 14 (1) 3/5 

4 
(Marseille) 

Siemens Verio 65 (11) 14 (28) 4/5 

5 
(Essen) 

Siemens Skyra 91 52 (3) 9 (6) 2/5 

6 
(Naples) 

Siemens Biograph 
mMR 

90 58 (2) 7 (27) 2/5 

7 
(Genoa) 

GE HDxt 11,000 147 2250 0.9 × 0.9 × 4.0 58 (3) 14 (10) 2/4 

8 
(Thessaloniki) 

GE HDxt 8002 126  56 (11) 32 (13) 2/4 

9 
(Amsterdam) 

Discovery MR750 63 (10) 7 (7) 3/5 

10 
(Lille) 

Philips Achieva 9000 90 2500 256 × 237 66 (2) 8 (15) 3/5 

11 
(Toulouse) 

Philips Achieva 60 (4) 19 (9) 3/5 

12 
(Chieti) 

Philips Achieva 11,000 256 × 211 69 (4) 9 (1) 4/5 

13 
(Perugia) 

Philips Achieva 9000 60 (12) 7 (3) 2/3 

Abbreviations: TR, repetition time; TE, echo time; TI, inversion time; FA, flip angle. 
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them to the FLAIR-space (FSL-FLIRT, 6 DOF and trilinear interpolation) 
where the manual segmentations were performed. 

2.5. Accuracy analysis 

First, a threshold of 0.5 was applied to the LGA and LPA lesion maps 
in order to create binary masks. After that, we assessed the accuracy of 
the cross-sectional algorithms (i.e. LGA and LPA) vs manual WMHs 
segmentation in terms of: i) volumetric accuracy (differences between 
volumes of the manual and automated segmentations), and ii) spatial 
accuracy (Dice coefficient, DC). DC was calculated with the following 
formula [38,39]: 

DC = 2
|Automated segmentation ∩ Manual segmentation|
|Automated segmentation| + |Manual segmentation|

2.6. Reproducibility analysis 

We assessed the test-retest reproducibility of LST in terms of: i) 
volumetric reproducibility, using the reproducibility error (ε) and the 
intraclass correlation coefficient (ICC), and ii) spatial reproducibility 
using the DC. Reproducibility error was calculated with following for
mula [31]: 

ε = 100
|Retes volume − Test volume|

(Retest volume + Test volume)/2  

2.7. Statistical analysis 

One-way Kruskal–Wallis test was used to test for MRI site and 
scanner effects on the participants’ distribution of age, volumes, accu
racy and reproducibility measures (significance threshold set at p <
0.05). If significant, we used post-hoc pairwise comparisons using 
Dunn’s all-pairs test. For the spatial accuracy analyses, Spearman rank 
correlation between DCs and manual WMHs volumes was performed to 
evaluate if the association between WMH volumes and spatial overlap 
was significant. An independent 2-group Mann-Whitney U Test was used 
to assess the DCs differences between the low WMH volume group (≤5 
mL) compared to the group with medium to high WMH volume (>5 mL). 
All analyses were performed using R, version 3.5.2 (R Foundation for 
statistical computing, https://www.r-project.org/). 

3. Results 

3.1. Participants’ features across MRI sites 

Table 1 shows participants’ demographic features across MRI sites. 
Age was similar across sites, except for the participants of site 5 (Essen) 
who were younger (age: 52 years, IQR = 3) than those of site 2 (Bar
celona, age: 73 years, IQR = 1, p = 0.004) and site 12 (Chieti, age: 69 
years, IQR = 4, p = 0.022). No differences across sites were observed in 
gender distribution, and time interval between test and retest scans 

(Table 1). The median WMH volume measured by manual rater was 
0.54 mL (IQR = 1.58), and no differences across sites or scanners are 
observed for this measure. 

3.2. Accuracy results 

Of the 60 subjects, two were excluded from accuracy analysis due to 
lack of lesions detected by the expert (n = 1), or for low signal-to-noise 
ratio (n = 1). Visual inspection of the WMHs segmentation showed 
different segmentation quality across MRI scanners, in particular the 
visual quality assessment shows high performance for LPA segmenta
tions (Fig. 1). 

3.2.1. Volumetric accuracy 
Fig. 2 shows median volume differences between manual and auto

mated segmentations. Volumetric accuracy of LPA SPM12 (volume dif
ference: -0.09, IQR = 0.53) seemed numerically better than that of LGA 
SPM8 (− 0.22, IQR = 0.50, p = 0.024), but was not statistically different 
than that of LGA SPM12 (− 0.12, IQR = 0.57, p = 0.084) (Fig. 2). 

No site effect was observed for volumetric differences, while a 
scanner effect was observed only for LGA SPM12 (− 0.44, IQR = 1.11 for 
GE vs − 0.01, IQR = 0.70 for Siemens, p = 0.010) and LPA SPM12 
(− 0.33, IQR = 1.23 for GE vs 0.01, IQR = 1.00 for Philips, p = 0.003). 

3.2.2. Spatial accuracy 
Fig. 3 shows the spatial accuracy between manual and automated 

segmentations for each subject, expressed by the DC coefficient. Subject 
were ordered based on the manual segmentation WMH volumes, 
showing a clear trend for worse performance at lower volumes. Median 
DC was 0.41 for LPA (from 0.34, IQR = 0.21, in Philips to 0.43, IQR =
0.34, in Siemens), 0.29 for LGA SPM8 (from 0.25, IQR = 0.27 in Philips 
to 0.42, IQR = 0.34 in Siemens), and 0.33 for LGA SPM12 (from 0.31, 
IQR = 0.35 in GE to 0.40, IQR = 0.28 in Siemens). No statistically sig
nificant differences were observed among the algorithms (p > 0.05). 
Moreover, as expected, the DC coefficient increased with increasing 
WMHs volume, independently of the considered algorithm (LGA SPM8: 
rho = 0.70, p < 0.001; LGA SPM12: rho = 0.62, p < 0.001; LPA SPM12: 
rho = 0.62, p < 0.001) (Fig. 3). Table 2 reports the DC of the two al
gorithms divided by lesion volume in low (≤5 mL) and medium to high 
(>5 mL). Indeed, the DC is higher for the group with higher WMH, 
irrespective of the algorithm (p < 0.005). No site or scanner effects were 
observed on these measures. 

3.3. Reproducibility results 

Of the 60 subjects, three were excluded from reproducibility analysis 
due to lack of lesions detected by the expert (n = 1, the same subjects 
excluded from the accuracy analysis), or for low signal-to-noise ratio (n 
= 1, the same subjects excluded from the accuracy analysis), or because 
the longitudinal segmentation failed (n = 1). 

Fig. 1. Manual and automated WMHs segmentations overlaid on sample subject 2D FLAIR scan. Abbreviations: SPM, statistical parametric mapping.  
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3.3.1. Volumetric reproducibility 
Using the cross-sectional algorithms, we observed a median repro

ducibility error of 10% (IQR = 27) using LPA, 14% (IQR = 31) for LGA 
SPM12 and 20% (IQR = 41) for LGA SPM8. 

Applying the LST longitudinal pipeline to LGA and LPA, the repro
ducibility errors were considerably reduced (LGA: 0%, IQR = 0, p <
0.001; LPA: 0%, IQR = 3, p < 0.001) compared to those observed using 
the cross-sectional algorithms only (Fig. 4). We observed a scanner effect 
only on the reproducibility error of SPM12 LGA (9% for Siemens vs 15% 
for GE, p = 0.029; and 30% for Philips, p = 0.003). Moreover, we found 
no site effect. We observed an excellent test-retest volumetric agreement 
using both cross-sectional algorithms and applying the longitudinal 
pipeline (ICC = 1). 

3.3.2. Spatial reproducibility 
The comparison between test-retest cross-sectional algorithms 

showed a similar (p = 0.975) DC for SPM8 LGA (0.65, IQR = 0.26), 
SPM12 LGA (0.67, IQR = 0.31) and LPA (0.66, IQR = 0.17). For cross- 
sectional algorithms the DC is higher in the group with higher WMH 
volume (Table 2, p < 0.005). The DC for both LGA and LPA with lon
gitudinal processing was very high (LGA: median = 1, IQR = 0 vs LPA: 
median = 1, IQR = 0.02; p = 0.04). We observed no site or scanner effect 
on this measure (Fig. 5). 

Fig. 2. Volumetric Accuracy: comparison between automated 
and manual segmentations.Boxplot represents lesion volumes 
differences between automated and manual segmentations, 
separated for scanner type and in the whole group. The overall 
comparison showed that the difference between manual and 
LPA SPM12 volumes was lower than that between manual and 
LGA SPM8 (p = 0.024), while not statistically different than 
that between manual and LGA SPM12 (p = 0.084), meaning 
that the volume accuracy is better for LPA SPM12 compared to 
LGA SPM8. 
Abbreviations: LGA, lesion growth algorithm; SPM, statistical 
parametric mapping; LPA, lesion prediction algorithm; Cross, 
cross-sectional.   

Fig. 3. Spatial accuracy is expressed by Dice coefficients for 
each subject ordered by lesion volumes. Median DC was 0.41 
for LPA, 0.29 for LGA on SPM8 and 0.33 for LGA SPM12. DC 
coefficients increased with increasing WMHs volume, inde
pendently of the considered algorithm (LGA SPM8: rho=0.70, 
p>0.001; LGA SPM12: rho=0.62, p>0.001; LPA SPM12: 
rho=0.62, p>0.001). Abbreviations: DC, dice coefficient; LGA, 
lesion growth algorithm; SPM, statistical parametric mapping; 
LPA, lesion prediction algorithm; Cross, cross-sectional. Spatial 
Accuracy: comparison between automated and manual 
segmentations.   

Table 2 
Summary of the accuracy and reproducibility measure (expressed in DC) 
grouped by low and medium to high volume.  

Comparison  Low (N =
54) 

Medium to high (N 
= 6) 

Volume ≤5 mL >5 mL 

Automated vs manual 
test 

DC Cross LGA 
SPM8 

0.27 [0.29] 0.62 [0.02] 

DC Cross LGA 
SPM12 

0.32 [0.28] 0.58 [0.10] 

DC Cross LPA 
SPM12 

0.38 [0.22] 0.60 [0.05] 

Automated test vs 
retest 

DC Cross LGA 
SPM8 

0.61 [0.31] 0.83 [0.06] 

DC Cross LGA 
SPM12 

0.64 [0.29] 0.80 [0.02] 

DC Long LGA 
SPM12 

1 [0.0] 1 [0.01] 

DC Cross LPA 
SPM12 

0.65 [0.15] 0.81 [0.03] 

DC Long LPA 
SPM12 

1 [0.03] 1 [0.01] 

Abbreviations: DC, dice coefficient; LGA, lesion growth algorithm; SPM, statis
tical parametric mapping; LPA, lesion prediction algorithm; Long, longitudinal. 
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4. Discussion 

In this study, we evaluated the accuracy and reproducibility of LST in 
a population of healthy elderly subjects scanned twice in a 3T MRI multi- 
site cohort, showing a good performance of its cross-sectional algo
rithms and longitudinal pipeline in terms of volumes accuracy and 
reproducibility. In particular, our main results are summarized as 

follows: (i) LPA and LGA show a good volumetric accuracy, but LPA 
performed overall better than LGA; (ii) the LGA and LPA’s spatial ac
curacy increases with the amount of WMHs; (iii) volumetric reproduc
ibility reveals that LST longitudinal pipeline steeply reduces the 
reproducibility error; (iv) spatial reproducibility of the longitudinal 
pipeline applied to LGA and LPA outputs was optimal. 

Compared to De Sitter and colleagues [40] in a cohort of 52 MS 

Fig. 4. Bars represent reproducibility error (%) = |Vretest-Vtest|/(Vretest+Vtest)/2. We assessed the volumetric reproducibility of the whole WMHs segmentation 
algorithms and pipelines for each site and grouped for scanner type. We observed a scanner effect only on the reproducibility error of SPM12 LGA (9% in Siemens vs 
15% in GE, p=0.029; and 30% in Philips, p=0.003). Abbreviations: LGA, lesion growth algorithm; SPM, statistical parametric mapping; LPA, lesion prediction 
algorithm; Cross, cross-sectional; Long, longitudinal. Volumetric reproducibility: comparison between test and retest automated WMHs segmentations. 

Fig. 5. Spatial reproducibility: comparison between test and retest automated WMHs segmentations. 
Bars represent Dice Coefficients between test and retest automated segmentations. 
We assessed the spatial reproducibility of the cross-sectional and longitudinal pipelines of WMHs segmentation algorithms for each site and grouped for scanner type. 
No site or scanner effect were observed.Abbreviations: DC, dice coefficient; LGA, lesion growth algorithm; SPM, statistical parametric mapping; LPA, lesion pre
diction algorithm; Long, longitudinal. 
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patients (mean WMH volume = 4.85 mL), we found a slightly better 
volumetric accuracy comparing both LPA (mean volume difference =
0.45 mL) and LGA (mean volume difference = 2.88 mL) using SPM12, or 
other tools that they have tested such as Cascade [41,42] (mean volume 
difference = 0.67 mL), Lesion-Topology preserving Anatomical Seg
mentation (Lesion-TOADS) [43] (mean volume difference = 2.18 mL) or 
using k-Nearest Neighbor with Tissue Type Priors (kNN-TTP) [44] 
(mean volume difference = − 1.46 mL). Similar results have been re
ported by Egger and colleagues [45] for LGA SPM8 (median volume 
difference = 0.68 mL), LGA SPM12 (median volume difference = 0.93 
mL), LPA SPM12 (median volume difference = 0.85 mL). 

On the other hand, the spatial accuracy we observed using both LGA 
and LPA (DC range = 0.29–0.41) was lower compared to previous 
studies using LST algorithms or other supervised/unsupervised or 
automated methods (DC range = 0.75–0.84, [44] mean WMH volume =
16.33 mL, [46–48]), except for De Sitter and colleagues that showed 
comparable results (DC range = 0.23–0.44) [40]. Conversely, studies on 
healthy subjects showed more variability, e.g. DC = 0.47 in Ong et al. 
[49] (mean WMH volume = 5.182.603 mm3))), DC between 0.63 and 
0.75 in Manjon et al. [50], or DC = 0.77 in Wang et al. [48,51] (mean 
WMH volume = 20.43 mL). The lower spatial accuracy found in our 
work might be due to the following reasons: (i) our sample consists of 
healthy participants with overall small WMHs volumes, which correlate 
with a lower DC (as represented in Fig. 3); (ii) we acquired only 2D 
FLAIR images, so we could expect a higher accuracy using 3D FLAIR; 
(iii) given the multi-site nature of this study, we expected a considerable 
heterogeneity of the algorithms’ performance across sites and scanners, 
which is a non-systematic bias for both manual and automated seg
mentations. Indeed, a high variability was observed for all quantifica
tion methods. Nevertheless, the multi-site nature of this study is a 
strength of this study, making the research setting closer to the real 
clinical setting and improving the generalization of our results. 

As far as we know, only a few studies have investigated the repro
ducibility of WMHs segmentation tools. The reproducibility of a 
FMRIB’s tool to segments automatically WMHs, Brain Intensity Ab
Normality Classification Algorithm (BIANCA), was tested in a sample of 
20 subjects scanned twice on the same scanner, revealing a very similar 
reproducibility error compared to our results for both LGA and LPA on 
SPM12 (reproducibility error mean = 10%) [48]. However, the longi
tudinal pipeline of LST allows to reduce the reproducibility error 
approximately to 0%. 

A quick and reliable WMHs quantification across different sites and 
scanners is needed both in clinical practice, in order to improve the 
diagnostic workup and track the disease progression of elderly people 
with suspected neurodegenerative diseases, and in research settings to 
improve the selection of the population of interest. Further studies on 
larger datasets are needed to confirm the accuracy and reproducibility of 
LST and to provide normative data on WMHs. Moreover, studies on the 
cause of the low accuracy, like lesions location, type or shape will 
enhance our knowledge of the WMHs and will help the algorithm 
developers. 

5. Limitation 

Marizzoni et al. (2015, 32] and Jovicich et al. (2013, 2014) [31,33] 
have already discussed some limitations of the study design, but some of 
the issues are addressed here for completeness. 

First, the number of participants included in this study is small (n =
60), and each site contributed with a different number of participants 
(from 4 to 5). We have grouped the MRI sites with the same scanner in 
order to increase the number of subjects per group. Moreover, the me
dian WMHs volume of our sample was low (0.54 mL, IQR = 1.58). 
Therefore, our sample might be little representative of a healthy sub
ject’s population. We only had 2D FLAIR (instead of 3D sequences), and 
their lower resolution might explain the low spatial agreement. 

Lastly, we did not use a training dataset to set the threshold (see 

method, LGA) but only visual inspection to be coherent with clinical 
practice. 

6. Conclusion 

LST is a free, easy-to-use and quick automated method allowing to 
accurately and reliably assess WMHs volume, even at multiple time 
points. We suggest the use of this tool in observational longitudinal 
research studies as a reliable tool to quantify WMHs overtime. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.mri.2020.11.008. 
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[28] Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, et al. An automated 
tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. 
Neuroimage 2012;59:3774–83. 

[29] Maldjian JA, Whitlow CT, Saha BN, Kota G, Vandergriff C, Davenport EM, et al. 
Automated white matter total lesion volume segmentation in diabetes. Am J 
Neuroradiol 2013. https://doi.org/10.3174/ajnr.A3590. 

[30] Galluzzi S, Marizzoni M, Babiloni C, Albani D, Antelmi L, Bagnoli C, et al. Clinical 
and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the 
innovative medicines initiative PharmaCog project: a “European ADNI study.”. 
J Intern Med 2016;279:576–91. 

[31] Jovicich J, Marizzoni M, Sala-Llonch R, Bosch B, Bartr??s-Faz D, Arnold J, et al.. 
Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison 
of cross-sectional and longitudinal segmentations. Neuroimage 2013;83:472–84. 

[32] Marizzoni M, Antelmi L, Bosch B, Bartr??s-Faz D, M??ller BW, Wiltfang J, et al.. 
Longitudinal reproducibility of automatically segmented hippocampal subfields: a 
multisite European 3T study on healthy elderly. Hum Brain Mapp 2015;36: 
3516–27. https://doi.org/10.1002/hbm.22859. 

[33] Jovicich J, Marizzoni M, Bosch B, Bartr??s-Faz D, Arnold J, Benninghoff J, et al.. 
Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor 
imaging of healthy elderly subjects. Neuroimage 2014;101:390–403. https://doi. 
org/10.1016/j.neuroimage.2014.06.075. 

[34] Jovicich J, Minati L, Marizzoni M, Marchitelli R, Sala-Llonch R, Bartr??s-Faz D, 
et al.. Longitudinal reproducibility of default-mode network connectivity in 
healthy elderly participants: a multicentric resting-state fMRI study. Neuroimage 
2016;124:442–54. https://doi.org/10.1016/j.neuroimage.2015.07.010. 

[35] Marchitelli R, Minati L, Marizzoni M, Bosch B, Bartr??s-Faz D, M??ller BW, et al.. 
Test-retest reliability of the default mode network in a multi-centric fMRI study of 

healthy elderly: effects of data-driven physiological noise correction techniques. 
Hum Brain Mapp 2016;37:2114–32. https://doi.org/10.1002/hbm.23157. 

[36] Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, et al. An automated 
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